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Shekhtman (J. Approx. Theory 30( 1980), 237-246) gives a sufficient condition
for the convergence of abstract splines. We show that his condition is not necessary
and give a related condition which is both necessary and sufficient. In the process,
we also give a necessary and sufficient condition for a sequence of abstract spline
projectors to be bounded.

Shekhtman [3] gives a sufficient condition for the convergence of abstract
splines. We give a related condition which is both necessary and sufficient.
In the process, we also give a necessary and sufficient condition for a
sequence of abstract spline projectors to be bounded.

It seems most convenient to discuss the abstract spline (as introduced by
Atteia [1]) in the following way. Let X be a Hilbert space, and let A be a set
of continuous linear functionals on X. From the possibly many elements of X
which agree with a given x E X on A, i.e., from the flat

x + ker A,

we attempt to select a particular one by the prescription that it should
minimize II Tyll over y in x + ker A. Here,

ker A := A 1:= n ker A
.leA

and T is a given bounded linear map on X to some Hilbert space Z. Any
solution to this minimization problem is an abstract spline, or, more
precisely, a (T, A)-spline interpolant to the x in question.

We now make some preliminary remarks regarding these interpolants.
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(i) The minimization problem and its solution(s) depend only on
ker A, hence do not change if we replace A by its closed linear hull, i.e., by
(A ~)1- = (A -1)-1. We therefore assume from now on that

A is a closed linear subspace of X* (=X).

(ii) In order to guarantee existence and uniqueness of the (T, A)-spline
interpolant for every x in X (and other things besides), Shekhtman [3] makes
the assumption that

ker Tn ker A = {Of

ran T is closed (1)

dim ker T < 00

Although the finite dimensionality of ker T is required for some ot'
Shekhtman's arguments, it turns out to be unnecessarily restrictive. Instead, I
assume that

incl(ker T, ker A) < 1

ran T is closed
(I')

Here, the inclination between two subspaces A and B is, by definition, the
cosine of the smallest angle between them, i.e., the number

incl(A, B):= sup
aEA,bEB

(2)

with PA , PB the orthogonal projector onto A and B, respectively. In
particular, it is easy to see that ker Tn ker A = {O} is equivalent to
incl(ker T, ker A) < 1 in case ker T (or ker A) is finite dimensional.

Assumption (I') is motivated by the following lemma whose proof I give
here for completeness.

LEMMA 1. Assume that ran T is closed. Then there exists one and only
one (T, A)-spline interpolant for each x in X if and only if

incl(ker T, ker A) < 1.

Proof We have

inf II Ty II = inf II Tx - Tz II = dist(Tx, T[ker A]),
YEx+kerA zEkerA

(3)

hence, y is a (T, A )-spline interpolant to x iff x - y E ker A and Ty is the
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error in the best approximation to Tx from T[ker A]. On the other hand,
ran T is closed by assumption, hence contains the closure of T[ker A],
therefore every Tx in ran T has a best approximation from T[ker A] iff
Tlker A] is closed. (Here I use the fact that T[ker A] is a linear subspace of
a Hilbert space.) This shows that every x in X has a (T, A)-spline interpolant
iff T[ker A] is closed.

Further, since the difference between two (T, A)-spline interpolants to x
necessarily lies in ker A as well as in ker T (since T must map them to the
same point, viz. the error in the bes, approximation to Tx), there is at most
one (T, A )-spline interpolant for a given x iff ker Tn ker A = {O f.

This shows existence and uniqueness of the interpolant to be equivalent to

ker T + ker A(=T- 1 [T[ker A]]) is closed and ker Tn ker A = jO}, (4)

'provided we can prove that (4) implies that T[ker A J is closed. For this, if
(4) holds, then X is the topological direct sum of ker T and ker A + (ker T +
ker A).l. This latter subspace is mapped 1-1 onto ran T and so, ran T being
closed by assumption, this mapping is open. In particular, T[ker A J must
then be closed.

This leaves the task of showing that (4) and (3) are equivalent. For this,
observe (else, see, e.g., [4; p. 243, Problem 3]) that (4) is equivalent to

inf{llx - yll: x E ker T, y E ker A, Ilxll = Ilyll = I} > 0

and, since X is a Hilbert space hence

Ilxll = II yll = 1 implies Ilx - yl12 = 2 - 2(x, y),

this is obviously equivalent to (3). I

(iii) In conclusion, assumption (1') ensures that the mInimization
problem has exactly one solution for given x. We shall denote it by

px.

It is obvious that the map p so defined is a linear projector on X, with

ker p = ker A.

Further, p is a bounded linear projector. It will be important later on to
know, more precisely, that II p II can be bounded above and below in terms of

c := incl(ker T, ker A)

as the following proposition shows.



CONVERGENCE OF ABSTRACT SPLINES

PROPOSITION 1. Let s := sin(ker T, ker A) :=~. Then

lis <II pll <1 + II(TlranQ)-lll/s

with

Q:= 1-PkerT

the orthoprojector onto (ker T).l.
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Proof For the lower bound, let P:= P A so that ker P = ker A = ker p.
Since px = x for x in ker T, we have

II x II = II px II <II p II dist(x, ker p), for all x E ker T,

while dist(x, ker p) = dist(x, ker P) = IIPxll. Consequently,

Ilxll
II pll ~ X~~P,T ~'

while

. (11Px ll )2 11(1-P)xI12
mf -- = 1 - sup 2

xEkerT Ilxll. xEkerT Ilxll
= 1 -11(1 - P)lkerT 11 2 = 1 - C

2

using (2) and the fact that 1 - P = Pker ,\.
For the upper bound, recall from Golomb [2, (3.8)] (or else verify

directly) that

p = 1 - Tol(PTlkerAI)T

with To := TlkerA' Consequently,

and we calculate II To III as

II To III = sup Ilxll/ll Txll·
xEker A

(5 )

But, since Tx = TQx (using the orthoprojector Q onto (ker T).l introduced
earlier), we have

Ilxll IIQxl1
Ilxll/ll Txll = II Qxll II TQxl1
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hence

while, as before,
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inf
XE ker A

II Qxl1
2

1 11(1 - Q)x112 = 1-11(1 _ Q)I 11 2= 1_ C2
IIxl1 2 = - x~~PrA IIxl12 kerA

by (2) and since 1 - Q= Pker T' I

We record for later use the following result obtained during the proof of
the upper bound:

(6)

Further, the proof of the lower bound provides the following convenient
criterion (as well as the criterion obtained from it by interchanging ker T and
ker A throughout).

COROLLARY. incl(ker T, ker A) < 1 iff there exists a bounded linear
projector P with ker P = ker A and ran P 2 ker T.

Proof The argument for the first inequality in Proposition I uses only
that P is a bounded linear projector with kernel equal to ker A and range
containing ker T, hence proves that

l/sin(ker T, ker A) <inf{IIPII: P l.proj., ker P = ker A, ran P 2 ker T}.

and so shows, in particular, that incl(ker T, ker A) < 1 in case such a
projector exists. On the other hand, Lemma 1, for example, in conjunction
with Proposition 1 shows the existence of such a projector (viz.p) in case
incl(ker T, ker A) < 1. I

We now come to the point of this note. Let (An) be a given sequence of
closed subspaces of X* = X satisfying

incl(ker T, ker An) < 1, all n.

Then Shekhtman is concerned with the question of when the corresponding
sequence (Pn) of spline projectors converges pointwise, or strongly, to 1. In
this connection, the following wel1-known lemma is a consequence of the
uniform boundedness principle and Lebesgue's Inequality

Ilx - Pnxll ~ 111 - Pnll dist(x, ran Pn)'
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LEMMA 2. Pn~s 1 iff (Pn) is bounded and limn~co ran Pn = x.

Here, we use the abbreviation
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with lim an taken in the norm on X.
Unfortunately, the spline interpolation projector is given in terms of T and

(An) and the character of ran Pn is, in general, not known a priori. It is
therefore important to give conditions for the convergence of Pn in terms of T
and (An)'

THEOREM 1 (Shekhtman [3 J). If dim ker T < 00, then lim An = X
implies Pn~s 1.

The major part of the proof is spent in proving

LEMMA 3. If dim ker T < 00 and lim An = X, then (Pn) is bounded.

I want to give a different proof of this lemma. By Proposition I, (P n ) in
bounded iff

sup incl(ker T, ker An) < 1. (7)

This latter condition is trivially satisfied in case (A n) is increasing (the only
situation considered, e.g., in Golomb [2]) since then incl(ker T, ker A n) is
decreasing as n increases. Condition (7) is also satisfied in case lim An 2
ker T (and dim ker T < 00). For, if (7) were violated, there would exist, using
the fact that dim ker T < 00, an x in ker T and Yn in ker An' all n, so that

-1' (x, Yn)
1m IlxllllYnl1 = 1.

But then, for all Zn in An'

-. Ilx - znll -. l(x - Zn' Yn)1 -. I(x, Yn)1
lim Ilxll ;>lim IlxllllYnl1 =limllxIIIIYnll=l,

showing that x would not be in lim An' In particular, Lemma 3 follows.
Shekhtman finishes the proof of Theorem I with the following nice obser

vation: Since (Pn) is bounded, so is (p~), and, since ran p~ = An while
lim An = X, by assumption, it follows that p~ ~s 1. Consequently,
Pn~w 1. But then TPn ~w T, therefore II Txll ~ lim II TPnxll, while also
II TPnxll ~ II Txll· Therefore II TPnxll-+ II Txll, and so TPn ~s T. It follows that
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while, by the finite dimensionality of ker T= ran(l- Q), Pn ---.W 1 implies
(1 - Q) Pn ---.S 1 - Q. I

Since ran P~ = An while II P~ II = II PnII, Shekhtman's argument shows that,
for the particular sequence (Pn) of spline projectors,

P~~ I implies Pn~ 1

(at least in case dim ker T < 00). Such an implication does not hold for
general sequences of linear projectors, so that the converse of Theorem 1, if
true, would again have to be proved using some special properties of the
spline projectors. As it turns out, though, the converse does not hold even for
spline projectors, as the following simple example shows.

EXAMPLE. Take X = Z = 12 , T = Q, 1 - Q = Pspanled' with ej := (6 i;)r: I

and

Then Pnx = Lj<n x(j)ej +x(n)e} which converges in norm to x since
lim x(n) = O. In other words, Pn ---.S 1. On the other hand,

dist(el' An) = dist(el' span{el + en}) = 1//2,

i.e., e l f1:. lim An'

In this example, lim An = span {e2 , e3 , ... } = (ker T)..l., hence

(8)

I will show below that condition (8) is necessary for Pn ---.S 1. The example
then also shows that lim An need not contain anything else. First, though, I
want to settle under what circumstances the converse of Theorem I holds.

PROPOSITION 2. Suppose that dim ker T < 00 and Pn---.S 1. Then
lim An = X if and only if there exists a linear projector R with ran R = ker T
which is the uniform limit of a sequence (R n) of linear projectors with
ran R n= ker T and ran R~ <;;A n, all n ~ no·

Proof Since dim ker T < 00, any bounded linear projector R on X with
range ker T can be written

R='\'x.@k
..;....... I I

i=1

for some basis (x;)~ of ker T and some dual set (Ai)~ of linear functionals.
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But, if now lim An = X, then we can find sequences (Alnl ) with Alnl E An' all
n, and IIA i - Aln)II ~ 0, i = 1,..., r. Since AiXj = ~ij' all i, j, it is then also
possible for all large enough n to find a basis (xln ») for ker T with
Aln)xY) = Oij and then, necessarily, also Ilx i -xln)ll--tn~oo 0. But then

r

R '= \' x(nl t)(\ A(n)
n· ......... , \!Y 1

i~l

converges in norm to R.
For the converse, if Rn converges in norm to R, then the sequence (Sn)

given by

converges in norm to

S := R*R + PT.

The linear map S is selfadjoint, bounded, and is bounded below. Explicitly,

(Sx, x) = IIRxl1 2+ II Txl1 2

while TRx = 0, hence

IITxI1 2=IIT(1-R)xI1 2 E {11(Tlran(l_R»)~lll, IITII}211(1-R)xr
\

This shows that

(Sx, x) E {min{l, II(Tlran(I_R»)-lll}, max{l, II Til W(IIRxI1 2+ 11(1- R)xI1 2
)

while

We conclude that the bilinear form

(x, Y)s := (Sx, y)

is an equivalent inner product on X and S is, therefore, in particular inver
tible. Since S n ~ S in norm, it follows that also S;; I exists for n sufficiently
large and converges in norm to S - I.

We now conclude fromPn--t s 1 that also SnPnS;;I--tS 1. In particular,
for x E X, setting Z n := S;; lX, we get

By construction, ranR~ C;;A n, while PTPn[X] C;;A n due to the fact that

040111/17
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(e.g., by (5» TPn = (1 - PT[kerAnl) T, hence TPn[Xj ~ T[ker AnJl- and so
T*TPn[Xj ~ (ker A n).1 =An. But this shows that x E limA n. I

The argument for the converse does not use the finite dimensionality of
ker T and therefore shows, carried out with R n = 1 - Q, all n (recall that
Q= P(kerT)l)' that, for all x E X,

But, since ran T* ~ (ker 1).1 = ran Q, this implies that T*TPnzn --+ Qx and
so shows that (ker 1).1 = ran Q ~ lim T*TPn[Xj ~ lim An' This proves

COROLLARY. IfPn--+5 1, then (ker 1).1 ~limAn'

THEOREM 2. Pn --+5 1 iff sup incl(ker T, ker An) < 1 and (ker 1).1 ~
limA n·

Proof Proposition 1 and the corollary to Proposition 2 show (with
Lemma 2) that the stated conditions are necessary for Pn --+5 1. In order to
show the sufficiency of these conditions, we need, by Proposition 1 and
Lemma 2, only prove the following

PROPOSITION 3. If (Pn) is bounded and (ker 1).1 ~ lim An' then
Pn --+51.

Proof Since ker T~ ran Pn and (Pn) is bounded by assumption, we are
done once we show that (ker T).1 ~ lim ran Pn • For this, let Z E (ker 1).1 =
ran Q, and consider y:= T* Tz, also in ran Q. By assumption, y = lim Yn'
with YnE An' all n. Consequently,

lim Qyn = T*Tz and (9)

Now consider the bounded and boundedly invertible linear map

S:= 1- Q + T*T

on X introduced earlier for the proof of the corollary to Proposition 2. Note
that ker T and (ker 1).1 = ran Q are both invariant under S, and S = 1 on
ker T. Hence we can write Yn as

Yn= (1 - Q)Yn + T*Tzn

for some zn E ran Q and, since Yn--+ Y E ran Q, we have T*Tzn --+ T*Tz, thus
Zn --+ z. Hence we need only prove that zn - pnzn --+ O. For this, we have from
(5) that
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while, by (6), Proposition 1 and the boundedness of (Pn)'

sup II(TlkerA rill < 00.
n n

Thus, we need only show that IIPT/ker,1
n

J Tznll-+ O. For this, note that
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(10)

IIPT[kerA I Tznll = sup
n xekerA"

while, for all x E ker An'

I(Tx, Tzn)!

IITxll

hence

Therefore

Ilxllll(l- Q)Ynll
IIPT[kerA I Tznll ~ sup II T II

n xeker An X

= II(TlkerA)-IIIII(l- Q)Ynll~ 0,

the last by (9) and (10). I
Remark. In effect, the proof of Propositions 2 and 3 relies on the fact

that 1'*T maps ran Pn n ran Q 1-1 onto ran P: n ran Q.
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